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Abstract

We present linear-time algorithms for both maximum hidden set and minimum convex cover in
funnel polygons. These algorithms show that funnel polygons are “homestead” polygons, i.e. polygons
for which the hidden set number and the convex cover number coincide. We extend the algorithm to
apply to maximum hidden vertex set and use the result to give a 2-approximation for all three problems
in pseudotriangles.

1 Introduction

We study two classic visibility problems, maximum hidden set and minimum convex cover. A hidden set
is a set H of points in a polygon P of such that no two points p, q ∈ H “see” each other, where p sees q
if the line segment is in P, pq ⊆ P . A maximum hidden set is such a set of maximum cardinality, i.e. the
problem is finding such a maximum set for a given polygon instance. A convex cover of a polygon P is a set
of convex polygons C such that the union of all the polygons is equal to P ,

⋃
Ci∈C = P . Note that these

polygons must lie within P . A minimum convex cover is such a set of minimum cardinality, i.e. the problem
is finding such a minimum set for a given polygon. A relationship between the size of a maximum hidden
set in a polygon P , hs(P ), and the size of a minimum convex cover of P , cc(P ), comes from Shermer [8].

hs(P ) ≤ cc(P )

This means that for any polygon, it suffices to provide a hidden set of size k and a convex cover of size k
to show that k = hs(P ) = cc(P ) = k. This is not always possible for all polygons, but for those which this
is the case Browne and Chiu [1] classify these as “homestead” polygons.

Both maximum hidden set and minimum convex cover are APX-hard [4,5] when considering the case of
general simple polygons, precluding a PTAS unless P=NP. However, this hardness result does not extend to
many common subclasses of polygons. Browne and Chiu [1] gave linear-time algorithms for simultaneously
calculating maximum hidden set and minimum convex cover in spiral polygons and histogram polygons.
There also exists polynomial-time for calculating more restricted versions of these problems in polygon
subclasses. Notably, Ghosh, Maheshwari, Pal, Saluja and Madhavan’s [6] algorithm finds the hidden set
restricted to vertices in polygons that are weakly visible from a convex edge. This algorithm runs in O(n2)
time where n is the number of vertices. While no explicit algorithm is given for funnel polygons, Choi, Shin,
and Chwa [3] characterize the visibility graph (of the vertices) of funnel polygons as weakly triangulated
graphs. Hidden vertex set is equivalent to independent set on the visibility graph of a polygon. Since
weakly triangulated graphs are perfect graphs, independent set can be found in polynomial-time [7]. Using
the specific properties of weakly triangulated graphs, Spinrad and Sritharan’s [9] algorithm for independent
set implies a faster algorithm for hidden vertex set in funnel polygons, which takes O(n4) time. As funnel
polygons are a subclass of the more general class of polygons weakly visible from a convex edge, Ghosh,
Maheshwari, Pal, Saluja and Madhavan’s [6] algorithm can also be used, achieving an even faster time of
O(n2).
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In Section 2, we describe an algorithm for solving both maximum hidden set and minimum convex cover
in funnel polygons, and in Section 3 we describe how the algorithm can be adapted to the problem of finding
the maximum hidden vertex set. We extend these techniques in Section 4 to the more general case of
pseudotriangles, achieving a simple 2-approximation. It is currently not known if either problem is NP-hard
for the case of pseudotriangles, but both algorithms run in O(n) time, which is optimal for both problems
as the complexity of the output alone can be Ω(n) [8].

2 Funnel polygons

We describe polygons as a list of vertices v1, v2, ...vn where the index reflects the clockwise order of the
vertices. We will also refer to the edges with the same indices, i.e. ei = vivi+1. We use the notion of
“left” tests or orientation tests defined on three points p1, p2, p3. p3 is said to be to the “left” of p1, p2 if a
left/counter-clockwise turn is made at p2 in the polygonal chain p1, p2, p3. Similarly, p3 is said to be to the
“right” of p1, p2 if a right/clockwise turn is made at p2 in the polygonal chain p1, p2, p3.

Funnel polygons are defined as simple polygons composed of a convex edge en = vnv1 with two reflex
chains R1 = v1, v2, ..., vt and R2 = vt, ..., vn−1, vn. Assume without loss of generality that t ≥ n − t, i.e.
|R1| ≥ |R2|. We will also assume that each reflex vertex is strictly reflex, i.e. no three vertices within a chain
are collinear and there is a turn at every vertex. If this is not the case, we can simply remove the vertices
that are not strictly reflex. Funnel polygons are also sometimes referred to as tower polygons.

We will use a recursive procedure to compute the hidden set and convex cover, and thus will be able
to prove the correctness of the algorithm using induction. Our algorithm gives both a hidden set H and a
convex cover C, but can be implemented to only find one. The algorithm finds both of these in O(n) time.

Theorem 2.1. For any funnel polygon P , a hidden set H in P and a convex cover C of P such that
|H| = |C| can be found in linear-time.

Proof. Algorithm 1 essentially determines a convex decomposition (with Steiner points) such that for each
piece in the decomposition, a hidden point can be placed along either R1 or R2 corresponding to it.

The algorithm considers two cases. The first, easier case, is where all of the edges ei, en−i for i ∈ [0, n− t]
strongly see each other, i.e. they form a convex quadrilateral vi, vi+1, vn−i, vn−i+1 that is within the polygon
P . We will refer to this as the Case 1 and the case in which this is not true as Case 2. We give two examples
of Case 1 in Figure 1. If this is the case, then we can simply place a hidden point on each midpoint of R1

(the longer chain) and connect the corresponding edges ei, en−i until there are no more edges to connect
across with from R2. At this point, we can simply partition the remaining region into triangles between the
remaining edges of R1 and the vertex vt+1.

From here, we can use an induction on n, the number of vertices, to cover Case 2 where not all edge
pairs satisfy the strong visibility requirement of Case 1. Clearly, when n = 3, we have an instance of Case 1
and thus already have a solution. From here we just need to show that if it holds for n ∈ [3, k], then it also
holds for n = k+1. We can assume that for when n = k+1, we do not have an instance of Case 1 since we
have already shown that. Let ei, en−i be the lowest i pair for which vi, vi+1, vn−i, vn−i+1 is not within P .

If vi does not see vn−i+1, then the pair ei−1en−i+1 would also not have their quadrilateral within P and
i− 1 < i, so vi sees vn−i+1. If vi+1 does not see vn−i, then either vi does not see vn−i or vn−i+1 does not see
vi+1 because if there is an internal vertex u in the shortest path from vi+1 to vn−i, it must be from either the
chain of R1 after vi+1 or the chain of R2 before vn−i. This follows from [6, Lemma 1], since funnel polygons
are a subclass of polygons weakly visible from a convex edge. Because R1 is a reflex chain, if u ∈ R1 then
u must also be in the shortest path from vi to vn−i. If u ∈ R2, then u must be in the shortest path from
vn−i+1 to vi+1. See Figure 2 for an example. Since these shortest paths have internal vertices, the endpoints
cannot see each other.

Therefore, since in all cases we find a convex cover and hidden set of the same size, Theorem 2.1 holds.
Algorithm 1 runs in O(n) time. First, note that determining whether we are in Case 1 or Case 2 only takes
O(1) time per edge in P . This is because the only way to be in Case 2 is if the edge extension of one edge
intersects with another edge, which takes O(1) to determine. We do not need to compare with any other
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Figure 1: Case 1 for the funnel polygons.

Figure 2: Lemma 1 of [6] implies that if vi+1 does not see vn−i then either vi does not see vn−i or vn−i+1

does not see vi+1.

edges of the polygon. P ′ has complexity at most 1 less than P , which is only the case if the index i at which
we form P ′ is 1, giving us the following recurrence:

T (n) = T (n− 1) +O(1)

The base case is T (1) = O(1), which solves to a total runtime of O(n).
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Figure 3: Case 2 for funnel polygons.

Data: P , a funnel polygon with convex edge vnv1
Result: H, a maximum hidden set in P and C, a minimum convex cover of P
H ← {};
C ← {};
i← 1;
while i ≤ t do

if vn−i is left of vivi+1 then
foreach j ∈ [1, i] do

Add the midpoint of ej to H;
Add quadrilateral vj , vj+1, vn−j , vn−j+1 to C;

end
Determine the point p of intersection between en−i−2 and the extension of ei;
Add quadrilateral vi, vi+1, p, vn−i+1 to C;
Recurse on the subpolygon P ′ = vi+1, ...vn−i, p. This yields (H

′, C ′) ;
Return (H ∪H ′, C ∪ C ′);

end
if vi+1 is right of vn−i+1vn−i then

foreach j ∈ [1, i] do
Add the midpoint of en−j to H;
Add quadrilateral vj , vj+1, vn−j , vn−j+1 to C;

end
Determine the point p of intersection between ei and the extension of en−i−2;
Add quadrilateral vi, p, vn−i, vn−i+1 to C;
Recurse on the subpolygon P ′ = p, vi+1...vn−i. This yields (H

′, C ′) ;
Return (H ∪H ′, C ∪ C ′);

end
i← i+ 1;

end
foreach j ∈ [1, t] do

Add the midpoint of ej to H;
if j < n− t then

Add quadrilateral vj , vj+1, vn−j , vn−j+1 to C;
end
else

Add triangle vj , vj+1, vt+1;
end

end
Algorithm 1: Algorithm for hidden set and convex cover in funnel polygons
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3 Variant problems in funnel polygons

There are a few interesting properties of Algorithm 1 which work even under more constrained versions of
our problem. Specifically, our hidden points are constrained to the boundary of P and there is no overlap
between any of the convex pieces, implying that we have obtained a convex decomposition. For a general
simple polygon, Chazelle and Dobkin [2] gave an O(n3) algorithm for convex decomposition while allowing
for the use of Steiner points (points that are not vertices of the polygon). Since this is a more constrained
problem, naturally the minimum convex decomposition is at least as large as the minimum convex cover,
meaning that our O(n) solution is optimal for the problem of minimum convex decomposition in funnel
polygons.

We also can permit additional constraints on the hidden set. In particular, our algorithm places points
along the boundary of the polygon. This means that for funnel polygons, there is no “advantage” from using
points in the interior of the polygon as the maximum hidden set is the same with or without constraining
to the boundary.

We can also adapt our algorithm to deal with the case of maximum hidden vertex set. Although the
properties of the visibility graph from [3] imply a polynomial algorithm for hidden vertex set, we can achieve
the same result in O(n).

Theorem 3.1. For any funnel polygon P , a hidden vertex set H in P and a convex cover C of the vertices
of P such that |H| = |C| can be found in linear-time.

Proof. Instead of using a convex cover of the whole polygon, we only need to find a convex cover of the
vertices to bound the hidden vertex set. This is because every convex piece in the cover of the vertices can
have at most 1 vertex in the hidden vertex set by the definition of convexity (all points see each other). We
again break into 2 cases, one where no recursion is necessary and another where we can use recursion.

In Case 1, we again have that every edge ei can strongly see its corresponding partner en−i. If this is
the case, then we can place hidden vertices on the longer chain, starting with v1 and alternating until vt is
reached. All odd vertices of index less than or equal to t will be a hidden vertex. We can use the same cover
as last time, but again alternating using those corresponding to the odd indexed edges before et. This is
sufficient to cover the vertices as every even vertex v2i is in the same quadrilateral as v2i−1 corresponding
to edge e2i−1. This quadrilateral will also cover vn−2i, vn−2i−1. See Figure 4 for an illustration.

Figure 4: Case 1 for the funnel polygons with respect to hidden vertex set.
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Case 2 is identical to that of Theorem 2.1, but it needs some slight care depending on whether the
lowest pair eien−i is such that i (or n − i) is odd or even. Without loss of generality, assume that it is
vi that cannot see vn−i−1. If i is even, then we will place at all odd numbered vertices less than i and
use all the odd numbered quadrilaterals, vjvj+1vn−j−1vn−j for odd j where j < i. We will then recurse
on P ′ = vi+1...vn−j−1. Note that P ′ does not include any new vertices, and assume that the vertices are
renumbered to reflex their index in the subpolygon. This renumbering can be done implicitly by keeping
track of the first and last vertex index in the current recursion layer. This case is depicted in the top picture
of Figure 5. If i is odd, then we will repeat the procedure for odd numbered vertices and quadrilaterals less
than i. However, we will also include a triangle, vivi+1vn−j . We then recurse on P ′ = vi+2...vn−j−1. Again,
no new vertices are made and all vertices outside P ′ have been covered. This subcase is shown in the bottom
figure of Figure 5.

Figure 5: Case 2 for the funnel polygons with respect to hidden vertex set.

Therefore, by induction, we have a hidden vertex set and a convex cover of the vertices of the same size.
All that remains is the recursion for time complexity. In the worst case, P ′ has 2 less vertices than P , which
means that we have:

T (n) = T (n− 2) +O(1)

The base case is T (1) = O(1), which solves to T (n) = O(n).

4 Pseudotriangles

Pseudotriangles are defined as simple polygons containing exactly 3 convex vertices, which means that it can
be represented as three reflex chains R1 = v1, v2, ..., vt, R2 = vt, ...vs−1, vs, R3 = vs, ...vn−1, vn. The three
convex vertices here are v1, vt, and vs. Without loss of generality, we will consider the cardinalities of the
chains to be such that R1 ≥ R2 ≥ R3. Funnel polygons are a subclass of pseudotriangles, where |R3| = 1.
We will only consider pseudotriangles that are not funnel polygons, as Section 2 already gives a linear-time
algorithm for funnel polygons.

Theorem 4.1. For any pseudotriangle P , a hidden set H in P and a convex cover C of P such that
|C| ≤ 2|H|, i.e. a 2-approximation, can be found in linear-time .
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Proof. We show that by using the algorithm for funnel polygons in Section 2, we can achieve a linear-time 2-
approximation for pseudotriangles. The procedure is simple: Consider the edge e1 = v1v2, and its extension.
The extension of e1 will land at some point p on R2 called p. It cannot land on either R1 or R3 otherwise
the landed on chain would not be reflex, and it must intersect some part of the boundary of P . Let p rest
on edge ei = vivi+1. This partitions P into two subpolygons P1 = v2, v3...vi, p and P2 = p, vj+1, ...v1. Both
P1 and P2 are composed of two reflex chains and a convex edge, making them both funnel polygons. This
is depicted in Figure 6.

Figure 6: Pseudotriangle partition into funnel polygons that allow for a 2-approximation.

From Theorem 2.1, we know that we can obtain from P1 a hidden set H1 and a convex cover C1. By
symmetry, P2 we get H2 and C2. As a hidden set, we take the larger, H = max(H1, H2). As a convex cover,
we take the union, H = C1∪C2. Because |H1| = |C1| and |H2| = |C2|, we know that |C| ≤ 2|H|. This proves
our claim, and since finding p takes at most O(n) time, as does each funnel, the total runtime is O(n).

Note, that while this algorithm does not achieve an exact answer, it is impossible to have an algorithm
that only places hidden points on the edges of a pseudotriangle and that finds the exact maximum hidden
set. The famous GFP (Godfried’s Favorite Polygon) counterexample suffices here, and we depict it in Figure
7. We give a convex cover of the boundary of size 3, which means that any hidden set constrained to the
boundary must have size at most 3. We also give a hidden set of size 4, which means that 3 pieces cannot
suffice for a convex cover.

Figure 7: Godfried’s favorite polygon, with a convex cover of the boundary of size 3 and a hidden set of size
4.

Therefore, any algorithm that places hidden points only on the boundary of a pseudotriangle cannot
achieve an approximation factor better than 4/3.
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Theorem 4.2. For any pseudotriangle P , a hidden vertex set H in P and a convex cover C of the vertices
of P such that |C| ≤ 2|H| can be found in linear-time.

Proof. For the vertex version, we again split P into two funnel polygons P1, P2 using the point p (intersection
of the edge extension of e1 with the boundary). Using Theorem 3.1, this will give us two hidden sets, H1

and H2 as well as two convex covers of the vertices C1 and C2. We can again take the union of C1 and C2

and the larger of H1 or H2, but we have some issues regarding the point p that was used in the partition.
Both C1 and C2 will cover p, so if we wish to constrain our convex pieces to vertices, we can easily clip out
p from the pieces that it is in. The larger issue is with the hidden sets.

To make H1 into a hidden vertex set, we need to determine whether the point p is in H1. If it is not, we
do nothing as p is the only non-vertex point in P1. If it is, then we will replace p with vi+1 (p lies on edge
ei = vivi+1). We know that vi+1 cannot see any hidden point in H1 because the only vertices that p sees
in P1 are vi and those in the chain R1 that are below the extension of edge pvi. This is a superset of the
vertices in P1 that vi+1 sees, which follows from considering the funnel v1, v2, ...vivi+1. In this funnel, vi+1

can only see those vertices under “before” the edge extension of ei. We give an example of this shift to vi+1

in Figure 8.

Figure 8: Shifting a non-vertex hidden point p to a vertex. Left: shifting to a vertex in P1 Right: shifting
to a vertex in P2.

The same can be done for H2, but instead shift a hidden vertex placed at p to vi. By symmetry, the
exact same argument applies. Therefore, we can take the adjusted hidden sets H ′

1 and H ′
2 and use the larger

of the two as our hidden vertex set H. Since |H ′
1| = |H1| = |C1| and |H ′

2| = |H2| = |C2|, we again have that
|C| ≤ 2|H|, hence proving our claim. Finding p takes naively O(n) time and running the funnel algorithm
on both P1 and P2 is at most O(n). This gives us a total runtime of O(n).

5 Conclusion

We show that funnel polygons are homestead polygons. We do so by giving linear-time algorithms for
both hidden set and convex cover. This, combined with the results from Browne and Chiu [1], give us 3
classifications of polygon for which the hidden set number and convex cover number both coincide and can
be calculated in linear-time: spiral polygons, histogram polygons, and funnel polygons. We also now have a
class of polygons for which minimum convex cover, maximum hidden set, and maximum hidden vertex set
can be approximated within a factor of 2, pseudotriangles.

We believe that the approximation factor for pseudotriangles can be greatly reduced, and do not believe
the problems to be NP-hard for the pseudotriangle case. We also believe that while interior hidden points
may be necessary for some instances, we suspect that there is no need to include more than 1, as is needed
in the Godfried example. Naturally more open questions revolve around looking at the problems for more
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polygonal subclasses. We are particularly interested in monotone mountains and convex fans and believe
similar techniques may be used for solving or at least approximating in those cases.

References

[1] Reilly Browne and Eric Chiu. Collapsing the hidden-set convex-cover inequality. In Proceedings of
the 38th Computational Geometry Young Researchers Forum (CG:YRF 2022), pages 37–42. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2022.

[2] Bernard Chazelle and David P Dobkin. Optimal convex decompositions. In Machine Intelligence and
pattern recognition, volume 2, pages 63–133. Elsevier, 1985.

[3] Sunghee Choi, Sukyoung Y Shin, and Kyung-Yong Chwa. Characterizing and recognizing the visibility
graph of a funnel-shaped polygon. Algorithmica, 14(1):27–51, 1995. doi:10.1007/BF01300372.

[4] Stephan Eidenbenz. Inapproximability of finding maximum hidden sets on polygons and terrains. Com-
putational Geometry, 21(3):139–153, 2002. URL: https://www.sciencedirect.com/science/article/
pii/S0925772101000293, doi:https://doi.org/10.1016/S0925-7721(01)00029-3.

[5] Stephan J. Eidenbenz and Peter Widmayer. An approximation algorithm for minimum convex cover with
logarithmic performance guarantee. SIAM Journal on Computing, 32(3):654–670, 2003. arXiv:https:

//doi.org/10.1137/S0097539702405139, doi:10.1137/S0097539702405139.

[6] Subir Kumar Ghosh, Anil Maheshwari, Sudebkumar Prasant Pal, Sanjeev Saluja, and C.E. Veni Mad-
havan. Characterizing and recognizing weak visibility polygons. Computational Geometry, 3(4):213–
233, 1993. URL: https://www.sciencedirect.com/science/article/pii/0925772193900104, doi:
https://doi.org/10.1016/0925-7721(93)90010-4.

[7] M. Grötschel, L. Lovász, and A. Schrijver. Polynomial algorithms for perfect graphs. In C. Berge
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